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Regularized Compression (Chen et al., 2012)

The mechanism is analogous to digram coding
(Witten et al., 1999). One starts with a se-
quence of single-character words (W0) and works
from that representation up in an agglomerative
fashion , iteratively removing boundaries between
two selected word types (effectively producing Wi

from Wi−1.) Regularized compression employs a
specialized decision criterion for balancing com-
pression rate and vocabulary complexity:

min. −αf(x, y) + |Wi−1|∆H̃(Wi−1,Wi)
s.t. x and y are word types; f(x, y) > nms;

either x or y is a character.

Notation

• f(x, y): bigram frequency;

• |Wi−1|: sequence length of Wi−1;

• ∆H̃(Wi−1,Wi) = H̃(Wi)− H̃(Wi−1).

We estimate the Shannon entropy H̃(W ) empir-
ically using maximum likelihood, as in:

log |W | − 1

|W |
∑

x:types

f(x) log f(x).

Note that we still need to estimate α and nms.

Change in Description Length

Compression Moves Masses Let x and y de-
note the selected word types. Let z = xy be a
new unseen token introduced to replace all the
bigrams (x, y). The following summarizes the
change in observed frequencies.

f(x) f(y) f(z) |W |
Wi−1 k l 0 N
Wi k −m l −m m N −m

Approximation The second term in the original
objective can be approximated by the change in
description length between Wi and Wi−1:

∆L = [(N −m) log(N −m)−N logN ]

+ [k log k − (k −m) log(k −m)]

+ [l log l − (l −m) log(l −m)]

−m logm

Analysis Note that the first three lines in the last equation are of the form x1 log x1−x2 log x2
for some x1, x2 ≥ 0. By using the Taylor series, we have the following inequalities:

m log
(k −m)(l −m)

Nm
≤ ∆L ≤ m log

kl

(N −m)m
. (1)

New Objectives

• G1: Replacing the second term in the original objective with the lower bound.

f(x, y)

(
log

(f(x)− f(x, y))(f(y)− f(x, y))

|Wi−1|f(x, y)
− α

)
• G2: Same as G1 except that the lower bound is divided by f(x, y) beforehand.

−αf(x, y) + log
(f(x)− f(x, y))(f(y)− f(x, y))

|Wi−1|f(x, y)

Result on Bernstein-Ratner Corpus

Setup Set nms = 3 as suggested. Employ three
specialized MDL-based search runs for α and ρ
(analogous to one-round coordinate ascent):

(a) Fix ρ to 0 and vary α to find the best value
(in the sense of description length);

(b) Find α as in (a). Fix α and vary ρ;

(c) Set ρ to a heuristic value 0.37 and vary α.

We use the following procedure to compute de-
scription length (Rissanen, 1978). Given a word
sequence W (say M types in total), we write
out all the induced word types entry by entry as
a character sequence C. Then the overall de-
scription length is:

|W |H̃(W ) + |C|H̃(C) +
M − 1

2
log |W |.

Performance

Run P R F
Baseline 76.9 81.6 79.2
G1 (a) α : 0.030 76.4 79.9 78.1
G1 (b) ρ : 0.38 73.4 80.2 76.8
G1 (c) α : 0.010 75.7 80.4 78.0
G2 (a) α : 0.002 82.1 80.0 81.0
G2 (b) ρ : 0.36 79.1 81.7 80.4
G2 (c) α : 0.004 79.3 84.2 81.7

Average Running Time (Per Fold)a

Method Sec.
Adaptors grammar, colloc3-syllable 53826
Adaptors grammar, colloc 10498
Regularized compressor 1.51
Regularized compressor, G1 (b) 0.60
Regularized compressor, G2 (b) 1.25

Performance Chart

Method P R F
Adaptors grammar, colloc3-syllable Johnson and Goldwater (2009) 86.1 88.4 87.2
Regularized compression/MDL, G2(b) — 79.1 81.7 80.4
Regularized compression/MDL Chen et al. (2012) 76.9 81.6 79.2
Adaptors grammar, colloc Johnson and Goldwater (2009) 78.4 75.7 77.1
Particle filter, unigram Börschinger and Johnson (2012) – – 77.1
Regularized compression/MDL, G1(b) — 73.4 80.2 76.8
Bootstrap voting experts/MDL Hewlett and Cohen (2011) 79.3 73.4 76.2
Nested Pitman-Yor process, bigram Mochihashi et al. (2009) 74.8 76.7 75.7
Branching entropy/MDL Zhikov et al. (2010) 76.3 74.5 75.4
Particle filter, bigram Börschinger and Johnson (2012) – – 74.5
Hierarchical Dirichlet process Goldwater et al. (2009) 75.2 69.6 72.3

aTested on an Intel Xeon 2.5GHz 8-core machine with 8GB RAM.
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